joaquin

joaquin

lunes, 6 de diciembre de 2010

Ejercicio de Funcion Cuadratica

Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola.
f(x) = ax² + bx +c
Representación gráfica de la parábola
Podemos construir una parábola a partir de estos puntos:
1. Vértice

Por el vértice pasa el eje de simetría de la parábola.
La ecuación del eje de simetría es:
2. Puntos de corte con el eje OX
En el eje de abscisas la segunda coordenada es cero, por lo que tendremos:
ax² + bx +c = 0
Resolviendo la ecuación podemos obtener:
Dos puntos de corte: (x1, 0) y (x2, 0) si b² − 4ac > 0
Un punto de corte: (x1, 0) si b² − 4ac = 0
Ningún punto de corte si b² − 4ac < 0
3. Punto de corte con el eje OY
En el eje de ordenadas la primera coordenada es cero, por lo que tendremos:
f(0) = a · 0² + b · 0 + c = c        (0,c)

Representar la función f(x) = x² − 4x + 3.
1. Vértice
x v = − (−4) / 2 = 2     y v = 2² − 4· 2 + 3 = −1       
 V(2, −1)
2. Puntos de corte con el eje OX
x² − 4x + 3 = 0

       
(3, 0)      (1, 0)
3. Punto de corte con el eje OY
(0, 3)


No hay comentarios: